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Determination of atmospheric and surface 

elemental and molecular composition of various 
solar system bodies is essential to the develop-
ment of a firm understanding of the origin and 
evolution of the solar system. Furthermore, such 
data is needed to address the intriguing question 
of whether or not life exists or once existed else-
where in the Solar System. As such, these meas-
urements are among the primary scientific goals 
of NASA’s current and future planetary missions. 
In recent years, significant progress toward both 
miniaturization and field portability of in situ ana-
lytical separation and detection devices have 
been made with future planetary explorations in 
mind. However, despite all these advances, accu-
rate in situ identification of atmospheric and sur-
face compounds remains a big challenge. In re-
sponse to that we are developing various hard-
ware and software tools which would enable us to 
uniquely identify species of interest in a complex 
chemical environment. As a part of this effort, we 
developed a novel Cascade Error Projection 
(CEP) Neural Network (NN) approach for accu-
rate classification of target compounds based on  
their ion mobility spectra. CEP is known as one of 
the most hardware-friendly algorithms based on 
the simplicity of the architecture, less bit resolu-
tion requirement for synapse, and fast conver-
gence. Our goal is to demonstrate the feasibility 
of utilizing neural network approach to establish 
that ion mobility spectral data contain sufficient 
information to permit the development of a novel 
“automated identification system” applicable to 
NASA’s future in situ planetary missions. 

Since 1990, neural networks have been widely 
used in chemistry for classification of spectral 
data into chemical classes or functional groups 
[Bell et al., 1999; Zheng, et al., 1996; Boger and 
Karpas, 1994].  This approach has proven its ca-
pability to capture the nonlinear mapping between 
given input samples to target samples by parame-
terizing the strength of the interconnection matrix 
(called weight space) in the optimal way. This 
technique is called supervised learning technique.  
If the sufficient samples are given for the network 
to learn, when done, it will form an effective non-

linear transformation to predict the new and un-
trained samples in the most optimal approxima-
tion (non linear interpolation).  

We developed a novel hardware learning algo-
rithm for neural network namely “Cascade Error 
Projection (CEP)” [Duong, 1995] which is used to 
serve as a tool for identification and classification 
of  the  chemicals. This approach has been dem-
onstrated for learning convergence in weight lim-
ited weigh space (hardware constraints) [Duong 
and Stubberud, 2000] and verified in hardware 
approach [Duong and Blaes, 2001]. The CEP has 
also been successfully demonstrated for its per-
formance for color segmentation [Duong, and 
Daud, 2000], target recognition [Duong and 
Duong, 2003], and prediction [Duong and Blaes, 
2001]. The CEP algorithm is implemented in a 
chip (<5x5mm2) shown in Fig 1.  

 
 
Most supervised learning neural networks fo-

cus on a software-based approach, in which the 
learning trajectory is often smooth.  When the 
weight component and the weight update are of 
8-bit value (which is typically based upon hard-
ware implementation constraints), learning con-
vergence is often very difficult [Hollis et al., 1990].  

Fig. 1: 21 x 10 x 5 Cascading Neural Net-
work chip developed by Lincoln Lab/MIT is 
shown. 
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On the other hand, hardware based neural net-
work approaches are power hungry and not com-
pact and is not suitable for mobile and/or remote 
application. Due to the nature of our hardware, it 
was necessary that we use a neural network 
learning algorithm which can be used on a minia-
turized platform suitable for mobile and remote 
applications. 

In this work, the ion mobility spectral data, ob-
tained from electrospray ionization ion mobility 
spectrometer system, are used as input data for 
CEP neural network code to learn and validate. 
The details of the IMS system can be found in our 
earlier publications [Johnson et al., 2003]. In brief, 
IMS is a high-pressure time-of-flight (TOF) 
method based on elastic collisions of an ion with 
a buffer gas. It is advantageous over the other 
detection methods because it can operate at the 
same pressure as the ESI resulting in no differen-
tial pumping when the ions go from ionizer to ana-
lyzer. When an ion is placed in the electric field of 
the IMS  it migrates in the direction of the field 
until it collides with another molecule. At that point 
it begins to accelerate again until it suffers an-
other collision and so forth. This results in each 
species having an average drift velocity, which is 
proportional to the applied electric field and the 
ion mobility (Km). The mobility itself is related to 
the size and shape of the ion imparting a second 
dimension of selectivity which enables IMS to 
separate isomers such as leucine and isoleucine 
[Beegle et al., 2001]. IMS has been demonstrated 
to be very sensitive in detecting organic com-
pounds [Beegle et al., 2002] and is currently the 
instrument of choice for field detection of explo-
sives and chemical/biological warfare agents 
[Baumbach et al., 1999]. 

Conclusions: It is demonstrated that the 
high-resolution ESI/IMS technique, equipped with 
a novel hardware learning algorithm (CEP neural 
network) has great potential to fulfill NASA re-
quirements for detecting and accurately analyzing 
chemical compounds in-situ. Such an instrument 
would be to able to quickly detect and accurately 
identify organic compounds (such as biotic amino 
acids, abiotic amino acids,  carboxylic acids, pep-
tides, etc.) as part of an in-situ experiment on the 
surface of a planetary body such as Mars, Europa 
and Titan. Furthermore, it possesses ppb detec-

tion sensitivity and is largely free from any frag-
mentation problems owing to the soft ionization 
method (ESI).  
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